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Abstract: Conformational change in polymers including proteins is central to many molecular processes.
Defining conformational states, however, remains a difficult and increasingly common problem, with many
existing methods based on arbitrary or potentially unrepresentative measures. Furthermore, the expanding
length of molecular dynamics simulations and direct observation of transitions between different energy
basins suggest that this issue will only become evermore important. Methods commonly used to characterize
conformational states include principal component analysis, root-mean-square deviation-based clustering,
and geometric measurements such as hinge angles and distances. Here we present a method where the
eigenvector frequencies derived from a Gaussian network model (Bahar, I.; Atilgan, A. R.; Erman, B. Folding
Des. 1997, 2, 173-181) of a trajectory of structures from a molecular dynamics simulation are used to
describe the state of the protein at each time point. We apply the method to three proteins that share the
same fold as the type II periplasmic binding proteins: The lysine-arginine-ornithine-binding protein, the
glutamine-binding protein, and the ligand-binding domain from the NR1 N-methyl-D-aspartate receptor.
We find that the method can distinguish different states in good agreement with a variety of previous analyses
and additionally provides information on the dynamic properties of that system at a given time point.

Introduction

Conformational change in polymer systems, including pro-
teins, is quite often central to their function. For example,
channel gating in response to voltage in voltage-dependent
potassium channels2 or allostery in the conformational spread
response to chemical stimuli in the chemotaxis system.3 Despite
this importance, the details of many conformational changes
remain unknown. This is in part due to experimental difficulty
of obtaining high-resolution crystal structures in multiple states.
In addition, simply capturing two states does not necessarily
tell us about the path taken in a conformational change. Such
details of the change may play a key role in applications of
models of conformational change; for example, in drug design,
where molecular dynamics (MD) has already defined roles for
induced fit4 and water.5 The energy landscape view of proteins6,7

describes these changes as movement from one energy basin
(or state) to another.8 Indeed, structural information obtained

from X-ray crystallography or NMR experiments usually reflects
a time-averaged view of an ensemble of structures within one
energy basin. Different basins equate to different conformational
states, and these states can be explored by careful manipulation
of the conditions, such as changing the solvent, as exemplified
by the behavior of melittin,9,10 or mutating a residue in the
protein.

Tracking changes between states is still very challenging for
experiments, although time-dependent NMR is able to provide
some insight.11 Simulations can, however, provide fully atom-
istic time-dependent information, and although we are still a
long way from obtaining reasonable statistics for large confor-
mational changes, the timescales (routinely tens of nanoseconds)
are now such that some infrequent events that correspond to
basin-hopping can be observed in an MD simulation.12 More
recently, structure-based Hamiltonians were used to move
between conformational states.8,13 This raises an interesting
problem if we consider a transition between two states A and
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B. How does one know, or classify, when one is in state A (as
defined by some experimentally determined structure, which
in itself may not be the best representative of that state, but for
these purposes will suffice) rather than in state B? Metrics that
have been used in the past include angles between domains,14

torsion angles of individual residues, interdomain distances,15,16

and number of contacts as a fraction of contacts unique to each
state.17 Although such metrics are useful and intuitive, they often
suffer from large amounts of noise in the simulation data and
sometimes can lead to difficulties in assigning intermediate states
to one state or the other (which may of course not always be
desirable anyway). Another problem is how best to characterize
the motion within each state. At the simplest level, this is often
described by the rmsd of key structural components of the
protein. A more detailed methodology utilizes principal com-
ponent analysis (PCA) or essential dynamics to describe the
low-frequency motions.18,19These methods are perfectly suitable
to describe the motion but also suffer from the problem of
(relatively) short trajectories20 and large loop motions that can
sometimes dominate the motion in the trajectory.

To address this, we present a novel method that makes use
of a Gaussian network model (GNM)1 in combination with MD
simulations. GNMs have been heavily exploited to provide
information on protein flexibility usually starting from just one
structure.21 Motions from a Hessian matrix, generated using an
abstract model of structure, are decomposed into eigenvectors
and eigenvalues, providing information on the concerted motions
of the protein and their dominance, respectively. These have
been found to correlate well with global motions seen from MD
simulations in bimolecular systems spanning a range of different
folds, functions, and sizes, including potassium channels,22-24

SecY,25 viral capsids,26 and ribosome.27 Its role in structural
classification has been explored,28 demonstrating its sensitivity
to fold and conformation.

By applying GNM calculations to a series of snapshots from
an MD simulation, we obtain a probability distribution of the
frequency for the first eigenvector (see Supporting Information
for a discussion on the validity of this approach). We show here
by application to proteins from a similar fold how the variation
in the probability distribution can help discriminate trajectories
that are in different states. Our results demonstrate that the
frequency (and the overall motion) corresponds to a different
conformational state. We also demonstrate that the method is

surprisingly sensitive and can, for example, discriminate subtle
changes due to the presence of ligand. As we are considering
ensembles of coordinates rather than single entities, the method
may represent an improved way of characterizing snapshots and
motions from a simulation. We demonstrate the method by
application to a series of proteins (Figure 1) that are known to
undergo similar conformational changes: the lysine-arginine-
ornithine-binding protein (LAOBP), the glutamine-binding
protein (GBP), and the ligand-binding domain (LBD) from the
NR1 N-methyl-D-aspartate (NMDA) receptor.

The motions in these proteins are central to their function.
Furthermore, they belong to the same fold and represent an ideal
test case.29 LAOBP and GBP are periplasmic binding proteins
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Figure 1. Cartoon representation of the three different proteins used in
this study. (A) LAOBP in the open-cleft form (PDB code: 2LAO). (B)
GBP in the open-cleft form (PDB code: 1GGG). (C) The ligand-binding
domain from the NR1 NMDA receptor in an open-cleft form (PDB code:
1PBQ. See ref 16 for more details). Proteins are colored in a blue to red
color ramp from the N- to C-termini.
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(PBPs) that are involved in the uptake of a variety of substrates
into the cell of Gram-negative bacteria. They have a bilobed
structure that acts via a Venus fly trap mechanism to bind the
ligand in the cleft between the two lobes.30,31 The bound
complex is recognized by a receptor located in the inner
membrane that transports the substrate into the cell by mech-
anisms that remain to be clarified. Detailed knowledge of the
dynamics of both open-cleft and substrate-bound closed-cleft
conformations of the PBPs will improve our understanding of
these processes. PBPs have also been heavily exploited in the
field of biosensors,32 but problems still arise with respect to
predicting which combinations of modifications will be suc-
cessful, perhaps reflecting interactions with solvent and the
overall dynamics.

The NMDA receptor is a subclass of the ionotropic glutamate
receptors. Glutamate is the major excitatory neurotransmitter
in the brain and is the physiologically relevant ligand. The
ligand-binding domain shows structural similarity to the PBPs,
but the closing of the cleft (due to glutamate binding) in this
instance induces a mechanical strain on the transmembrane
region causing it to open.33 This opening allows the passage of
cations into and out of the cell. The resulting depolarization
across the membrane forms the start of neuronal signal propaga-
tion that allows neurons to communicate with each other. The
receptor is thought to be arranged as a dimer of dimers,34 and
although no structure exists for the tetramer, presumably the
subunits sit adjacent to each other. Thus, the dynamics of one
ligand-binding domain will exert an effect on its neighbors.
These interactions will play a central role in defining their
response to neurotransmitters.

Although the principal motion in all three of these proteins
is the cleft closure, the remaining less dominant motions will
contribute to their function. For LAOBP and GBP, these less
dominant motions may play a role in the transfer of the substrate
to the transmembrane receptor. In the case of the NMDA
receptor, these secondary motions may play a role in “tuning”
the response of the receptor to the neurotransmitter. These
motions may thus be important in the context of dynamic
allostery.35 The method of analysis we present suffers from less
bias and system dependence compared to geometric-based
analysis approaches such as a distance or angle and may
therefore represent a general approach to characterizing con-
formational change.

Methods

Simulations. Molecular dynamics trajectories were obtained from
previous reported simulations in the literature. LAOBP was reported
by Pang et al.,12 GBP was reported by Pang et al.,36 and the ligand-
binding domain from the NR1 NMDA receptor was reported by Kaye
et al.16 The LAOBP series of simulations considered here were apo
simulations where ligands (arginine, ornithine, histidine, or lysine) if

present were removed before the start of the simulation. In the case of
GBP, the authors had extended the simulations to 10 ns post publication.
Simulations corresponding to the open-apo, glutamine-bound, and
closed-apo (glutamine bound state but with glutamine removed) states
were considered. For LAOBP and GBP, data from 10 ns were used.
For the NR1-LBD simulations, all trajectories were 20-ns long. NR1
simulations with and without the presence of the glycine ligand for
both wild-type and a C744A-C798A mutant (which removes a disulfide
bond linking the two domains; Figure 1) were considered. Snapshots
were taken every 5 ps from each trajectory during the GNM processing.
All simulations were performed with GROMACS.

Gaussian Network Model.Each structure from the simulations was
analyzed with the Gaussian network model as described in ref 37.
Briefly, a Kirchoff matrix was constructed based on the relative
positions of carbonR atoms in the structure; if two residues were within
a cutoff distance of 7 Å they were considered bound by a spring. This
value was chosen because it is a typical and widely used cutoff for
GNM models37-39 and as such would appear to be the most applicable
for analyzing a range of related structures. However, we tested the
sensitivity of the method to the choice of cutoff from 5 to 9 Å for the
LAOBP-Arg-apo simulation (Supporting Information). The results are
robust to the choice of cutoff, but at lower cutoffs the singular value
decomposition does not always converge. For the higher cutoffs, the
interpretation of the data does not change. All bonds have equal,
arbitrary spring constants. Singular value decomposition is then
performed on the matrix to give eigenvalues and eigenvectors of motion.
The square root of the eigenvalue is equal to the frequency of the
motion, which is inversely proportional to the dominance of a given
motion. In contrast with normal-mode analysis (NMA), which has six
zero eigenvalues to represent rotation and translation, the GNM has a
single zero eigenvalue representing rotation and translation. This is as
NMA explicitly considers the Cartesian components of each spring,
whereas the GNM considers the inner products of the Cartesian vectors40

and as such is isotropic. The motion with the lowest positive nonzero
eigenvalue therefore represents the dominant motion undergone by a
given structure.29

Statistical Analysis. All statistical analysis was performed using
R.41 One-way analysis of variance (ANOVA42) was used to detect a
difference between means. If statistically significant differences in the
means were detected with ANOVA, Tukey’s post-hoc tests were carried
out for paired comparisons. Tukey’s method was chosen as it adjusts
for multiple comparisons.43

Results

Abstract Model. To demonstrate the principle of the analysis,
we considered the smallest possible system that demonstrates
changes in GNM frequencies. This is described in the Support-
ing Information.

Example Proteins. By way of application, we apply the
methodology to proteins where we already have some existing
knowledge about the conformational dynamics: LAOBP, GBP,
and the ligand binding domain from the NR1 NMDA receptor.
These proteins are all members of the same fold, and our
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simulation data set (Table 1) includes trajectories of mutants
and different ligands. Thus, the influence of these factors on
the conformational states the proteins explore can be assessed.
Frames from each trajectory were used as input for the GNM
analysis.

Lysine-Arginine-Ornithine-Binding Protein. Applying
this method to related structures in the periplasmic binding
protein family such as LAOBP reveals similar patterns and can
be used to clearly distinguish between different states. Figure
2 shows results from LAOBP simulations that started from a
closed-cleft conformation but with the ligand in each case
removed. Figure 2A-C suggests a distribution that is in accord
with there being only one state. This agrees with the earlier
analysis of these trajectories that demonstrated that they
remained in a closed state as defined by the separation of the
two lobes.12

Figure 2D (LAOBP-Arg-apo) reveals a different pattern, a
bimodal distribution, which reflects the observation that this
simulation undergoes a distinct transition from closed- to open-
cleft conformation. This hypothesis is supported by analysis of
the LAOBP-open-apo trajectory that reveals one distinct peak
centered around an eigenvalue of 0.07 (Figure 2E). That the
LAOBP-His-apo, LAOBP-Lys-apo, and LAOBP-Orn-apo are
one state and differ from the LAOBP-open-apo state is
highlighted further by comparing box plots of their distributions
(Figure 3A). These distributions can be further rationalized by
a clustering analysis of the trajectory frames, based on the CR
rmsd. The frames from the LAOBP-Arg-apo can be clustered
into two distinct groups using a threshold of 2.65 Å using the
method described by Daura et al.45 (Figure 3B). The same
threshold gives just one cluster for all of the frames extracted
from the LAOBP-His-apo, LAOBP-Lys-apo, and LAOBP-Orn-
apo simulations and one cluster from the LAOBP-open-apo
simulation. In addition, this change in structure can also be
observed with other methods, and the eigenvalues can be seen
to closely follow both the domain distance (here defined as the
distance between the centers of mass of the two domains) and
the projection down the dominant eigenvector defined by PCA
(Figure 3C). This is discussed further later in the article.

We wanted to know, however, to what extent the eigenvector
distributions were similar. Further statistical analysis (ANOVA
with post comparison tests) reveals that the distributions for
the LAOBP-open-apo, LAOBP-His-apo, LAOBP-Lys-apo, and
LAOBP-Orn-apo are in fact all significantly different from one
another at the 95% confidence level (Tables 2 and 3). That the
three “closed-apo” simulations that remained in a single state
(LAOBP-His-apo, LAOBP-Lys-apo, and LAOBP-Orn-apo) are
all significantly different implies two things: (i) the method is
surprisingly sensitive to very small changes in conformation
and (ii) these three simulations have not converged (they only
differ in their initial conformation). One can, however, see
substantial overlap in the closed-cleft simulations (Figures
2A-C and 3A) and that these distributions have little overlap
with the LAOBP-open-apo simulations (Figures 2E and 3A).
This is supported by the ANOVA analysis (Tables 2 and 3)
that suggests that the differences in the means is small between
closed-cleft simulations compared to the difference in the mean

(45) Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W. F.;
Mark, A. E. Angew. Chem., Int. Ed.1999, 38, 236-240.

(46) Daura, X.; van Gunsteren, W. F.; Mark, A. E.Proteins: Struct., Funct.,
Genet.1999, 34, 269-280.

(47) Preusser, A.ACM Trans. Math. Software1989, 15, 79-89.

Table 1. Summary of Simulation Data Used

simulation description
time
(ns) ref

LAOBP-open-apo open-cleft 10 12
LAOBP-Lys-apo ligand removed before

start of MD simulation
10 12

LAOBP-Arg-apo 10 12
LAOBP-Orn-apo 10 12
LAOBP-His-apo 10 12
GBP-open-apo open-cleft form 10 36
GBP-Gln-bound closed-cleft, ligand bound 10 36
GBP-closed-apo ligand removed before

simulation
10 36

NR1-WT-apo open-cleft WT simulation 20 44
NR1-C744A-C798A-apo mutant based on open-cleft

WT
20 44

NR1-WT-closed-Gly WT with glycine bound 20 44
NR1-C744A-C798A-Gly mutant with glycine bound 20 44

Figure 2. Analysis of the LAOBP trajectories. (A-C) Results for the
closed-apo simulations from LAOBP-His, LAOBP-Lys, and LAOBP-Orn,
respectively. Peaks are in approximately the same position, but they are
statistically different. (D) Result for the LAOBP-Arg simulation. This
appears to have two peaks: one centered around 0.14 and another peak at
0.07. This simulation has been reported to undergo a transition from a
closed-cleft conformation to an open-cleft conformation. The inset shows
how the eigenvalue varies with time and demonstrates that the simulation
is moving in one direction rather than fluctuating between these states. (E)
Analysis of the LAOBP-open-apo simulation where there is a single peak
centered around 0.07.
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between LAOBP-open-apo and the closed-cleft simulations (an
order of magnitude).

Similar results are obtained for the GBP where three
simulations were analyzed: an open-apo state, a glutamine-
bound state, and a closed-cleft state (Figure 4). There is clear
distinction between the GBP-open-apo and the two closed-cleft
distributions (GBP-Gln-bound and GBP-closed-apo). Compari-
son of GBP-Gln-bound and GBP-closed-apo, however, raises
an interesting issue. Are the differences in the distributions due
to the presence of ligand or do they simply reflect a sampling
issue as we suggested earlier for the LAOBP simulations? We
cannot answer that comprehensively at this stage. However,
given that the protein is in the same starting configuration we
tentatively suggest that this difference may be attributable to
the presence of the ligand.

NR1: Can Effects of Mutations Be Observed?We were
interested to know whether the method could distinguish

Figure 3. (A) Box plots for the LAOBP simulations that remained in a
single conformational state. Whisker lines are drawn at 1.5 times the
interquartile range. Outliers are indicated explicitly. The overlap between
the LAOBP-His-apo, LAOBP-Lys-apo, and the LAOBP-Orn-apo simula-
tions is substantial. Conversely, there is very little overlap between those
simulations and the LAOBP-open-apo simulation. (B) The rmsd matrix of
all five LAOBP simulations and the results of a cluster analysis using the
method as described by Daura et al.46 Two different states are illustrated
by the yellow and red blocks in the lower half according to the clustering.
It can clearly be seen that the LAOBP-Arg-apo simulation has two clusters
of conformations. (C) Changes in interdomain distance (top), eigenvalue
(middle), and the projection onto the first principle component (bottom)
from the LAOBP-Arg-apo simulation.

Table 2. ANOVA Analysis of the LAOBP Apo Simulations
(LAOBP-Open-Apo, LAOBP-His-Apo, LAOBP-Lys-Apo, and
LAOBP-Orn-Apo)

df sum sq mean sq F value Pa

apo trajectories 3 12.5488 4.1829 26680<2.2e-16

residuals 8000 1.2543 0.0002

a The low P value here implies that there is a significant difference
between the mean eigenvalue for the simulations (at least between two).

Table 3. Tukey Multiple Comparisons of the Means for the
LAOBP Apo Simulations (Excluding LAOBP-Arg-Apo); All Are
Significant at the 95% Confidence Limit

simulation diffa

LAOBP-open-apo: LAOBP-His-apo 0.084747408
LAOBP-open-apo: LAOBP-Orn-apo 0.092447208
LAOBP-open-apo: LAOBP-Lys-apo 0.095736632
LAOBP-His-apo: LAOBP-Orn-apo 0.007699800
LAOBP-His-apo: LAOBP-Lys-apo 0.010989224
LAOBP-Orn-apo: LAOBP-Lys-apo 0.003289424

a Note that the difference between the LAOBP-open-apo distribution and
the other distributions is much larger (approximately 1 order of magnitude)
than that between the LAOBP-His-apo, LAOBP-Orn-apo, or LAOBP-Lys-
apo distributions.

Figure 4. Results from GBP simulations for the open-apo (A), Gln-bound
(B), and closed-apo (C) simulations.
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between mutations in proteins that might affect the dynamics.
To this end, we used a mutation in the NR1-LBD protein
(C744A-C798A) that removed a disulfide bond that tethered
the two lobes together.44 Our previous simulation data suggested
that the mutated protein more readily underwent transitions
between open- and closed-cleft conformations.44 The distribu-
tions of the principal eigenvector for WT and C744A-C798A
NR1-LBD mutant in open-apo and glycine-bound states are
shown in Figure 5. Comparing the distributions for NR1-WT-
apo-1 and NR1-C744A-C798A-apo-1, Figure 5A,B shows two
peaks common to both simulations (at 0.065 and 0.11) that
appear to correspond to open and closed states, respectively. In
addition, there is a third peak for the NR1-WT-apo-1 centered
around 0.15. This could reflect the formation of a conformation
that is more closed than the ligand-bound closed conforma-
tions.44 In comparison, the simulations starting from closed
structures with glycine bound for the wild type (Figure 5C) and
the mutant (Figure 5D) show a similar set of peaks, although
in the wild-type simulation the eigenvalues are dominated by a
peak in the region of the closed-state peak (0.11), with a small
shoulder (at 0.8). The mutant protein has a single, broad peak,
residing between the two closed peaks from the NR1-WT-apo-1
simulation (Figure 5A). Note that there is no peak in either
glycine-bound simulation, reflecting the maintenance of a
closed-cleft conformation throughout. Overall, it appears that
the mutation does not affect the frequency of the first eigen-
vector in the open-cleft state, but may have a stronger influence
on the closed-cleft conformational state.

Comparisons with Existing Methods. By comparing the
eigenvalues over time against domain distance and the projection
of a trajectory down a dominant eigenvector defined by principle
component analysis, we can demonstrate both the key similari-
ties and differences between these approaches. Figures 3C and
5E show the changes in eigenvalue, projection of the trajectory
along the dominant eigenvector defined by PCA, and interdo-
main distance. The simulation of closed apo LAOBP (based
on the structure with arginine bound) demonstrates a movement
over time between two distinct states: a closed conformation
(from 0 to 5 ns) and an open conformation (from 5.5 to 10 ns).
Both domain distance and the PCA projection continue to vary
after opening, whereas the eigenvalues from the GNM remain
relatively stable, reflecting what is concluded from visual
inspection.

In comparison, while three states were observed in the
simulation of NR1 wild type where closure was observed, the
GNM eigenvalues most clearly reflected each of the three states,
whereas the discrimination was less clear for one state for the
other metrics. The steps observed in domain distance reflect
the eigenvalues most closely, but like the LAOBP simulation
the open state showed greater variation that could not be
identified in the changes in eigenvalues over time. The projec-
tion onto the first principle component demonstrates the first
step clearly, but the discrimination between the final two states
is less clear, possibly masked by the domination of the first
two states in the PCA calculation.

GNM Dynamics over Time. The elastic network model is
most frequently used as a predictor of dynamics, and the change
in frequency of the dominant GNM mode reflects a change in
dominance of the mode over the course of the trajectory. It is
thus also interesting to examine the changes in the predicted

dynamics over time, to understand if the changes in conforma-
tion alter the precise shape of the dynamics. Figure 6A shows

Figure 5. Results for the ligand-binding domain from the NR1 NMDA
receptor: eigenvalue distributions for the first eigenvector are shown for
the NR1-WT-apo simulation (A), the NR1-C744A-C798A-apo simulation
(B), the NR1-WT-closed-apo simulation (C), and the NR1-C744A-C798A-
Gly simulation (D). (E) Change in interdomain distance (top), eigenvalue
(middle), and PCA projection (bottom) with time for the NR1-WT-apo
simulation.
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all eigenvectors over the trajectory overlaid. As the absolute
sign of any eigenvector does not influence the dynamics (that
is, an arbitrary eigenvector is interpreted as the same as the
eigenvector multiplied by-1), it is possible to see that the
eigenvectors all show the same patterns in the simulations where
conformational change is not undergone. Furthermore, when
considering the simulation where conformational change takes
place, visual inspection indicates that it resembles a mix of the
eigenvectors from the open and closed states. To further examine
this, we calculated the normalized inner products of all vectors
from a trajectory with one another, giving a value between-1
and 1 for each eigenvector. To take account of vectors that are
parallel but in opposite directions, we then make all values
positive, giving a value of zero for orthogonal vectors and 1
for parallel vectors. We can see from the results in Figure 6B
that within a trajectory where conformational change is not
undergone, the eigenvectors are very similar (>0.95). Where
conformational change occurs, we can again see that the
eigenvectors within a conformation are almost identical, but
between conformations the inner products remain similar (>0.8).
While these differences could be used in combination with the
eigenvalue results to distinguish the different conformations,
they are too slight and variable to be useful for changes on this
scale. This, however, might not be true for all complexes
undergoing a conformational change; the difference may be
greater where larger changes are undergone.

By analyzing the changes in eigenvalue over all simulations,
it can be seen that more closed conformations have lower
eigenvalues than open conformations (Figures 3A and 5A). An
immediate conclusion that can be made is that the more open
conformations have fewer interdomain contacts, and thus the
domains are more free to move than when closed. Hence, the
eigenvalue is lower and the motion more dominant. Looking
in more detail at the difference between the contact matrixes
for a structure in its open and closed states (LAOBP apo
simulation, based on the arginine complex at 2 and 8 ns), we
can see that the sum of total contacts is only different by 6
(Figure 6E). However, when the contacts are overlaid onto the
structures it can be seen that in the closed structure most unique
contacts are between domains, particularly distal to the hinge
region. In contrast, the open structure has multiple unique
contacts in the hinge region. On the basis of these data, we
suggest that the additional contacts between the domains are
sufficient to cause the large change in eigenvalue by locking
the cleft shut at a point opposite the hinge.

Conclusions

As atomistic MD simulations are increasingly able to sample
longer timescales, structures are more able to move between
two states. However, the definition of states using common
metrics such as clustering, PCA, interdomain distances, or hinge
angles can be inappropriate or insufficiently sensitive for many
problems. We present here a novel approach that utilizes GNM
calculations to characterize the (isotropic) dynamic properties
of each snapshot. This approach is able to readily distinguish
between open- and closed-cleft conformations in the PBP class
of proteins, for example. Although the data are limited, the
method may also be able to pick out quite discrete changes in
dynamics attributable to mutations in the protein structure. The
method has the advantage that it encompasses the contribution
from all residues, but unlike distance metrics it is not subject

Figure 6. Comparisons of the dynamics over the course of multiple
trajectories. Plot of the individual eigenvectors per residue for the LAOBP-
open-apo (A), LAOBP-Orn-apo (B), and LAOBP-Arg-apo (C) simulations.
Each eigenvector contains a single value for each CR atom, due to then ×
n matrix used to generate modes. The gray lines are composed of 2001
lines (the number of frames extracted from each trajectory) and are
symmetrical about the zero line. This is because the GNM method is not
able to distinguish phase. The LAOBP-Arg-apo simulation (C) displays a
pattern that has elements of both the LAOBP-open-apo simulation (A) and
the LAOBP-closed-apo (B) simulations. That they are two different
populations is illustrated further by taking a frame at 1.5 and 7.5 ns from
the LAOBP-Arg-apo simulation and overlaying them on top of the data
for the LAOBP-open-apo (A) and LAOBP-Orn-apo (B) simulations shown
as a black line. (D) Inner products of every tenth eigenvector over time for
LAOBP simulations without conformational changes (LAOBP-open-apo
and LAOBP-Orn-apo) and with conformational changes (LAOBP-Arg-apo).
Orthogonal vectors will have a value of zero; parallel vectors will have a
value of 1. Diagrams are generated with Xfarbe.47 (E) Plot of contact
matrixes from different points of the LAOBP-Arg-apo simulation onto the
structure. Common contacts between CR are plotted in purple, contacts
unique to the closed state (at 2 ns) are blue, and contacts unique to the
open state (at 8 ns) are red.
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to undue bias from one region of the protein (e.g., a large loop
motion). The approach also offers an advantage over methods
such as native state contacts analysis as no prior knowledge of
the states is required to characterize them.
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